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An adaptive mesh enrichment procedure for a finite-element solution of the two-
dimensional Poisson–Boltzmann equation is described. The mesh adaptation is per-
formed by subdividing the cells using information obtained in the previous step of the
solution and next rearranging the mesh to be a Delaunay triangulation. The procedure
allows the gradual improvement of the quality of the solution and adjustment of the
geometry of the problem. The performance of the proposed approach is illustrated
by applying it to the problem of two identical colloidal particles in a symmetric
electrolyte. c© 2001 Academic Press
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1. INTRODUCTION

The nonlinear Poisson–Boltzmann (PB) equation is used for the description of the dis-
tribution of electrostatic potential in colloidal dispersions [1, 2]. Knowing the electrostatic
potential, one can calculate other quantities such as the free energy of a colloidal system
and the resulting force of particle–particle interaction. Features of interparticle interaction
are of great importance for the stability and properties of colloidal dispersions. One of the
most intriguing phenomena is metastable superheated crystalline structures performed by
identical charged latex spheres in water [3]. The structure and dynamics of these metastable
colloidal crystals seem to be accounted for by the long-range attraction between the similarly
charged spherical particles. Numerical investigation of models based on the PB equation
can provide important information on effective interparticle interaction in colloidal systems.

An approach based on the PB equation can be applied to the analysis of the well known
problem of two identical charged spherical particles immersed in a symmetric univalent elec-
trolyte. Owing to the geometrical symmetry, it can be reduced to two dimensions and is very
suitable for the testing of different numerical methods. The problem of interaction of two
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identical colloidal particles was studied numerically by finite-difference methods in [4–6]
and by finite-element methods in [7–9]. The application of finite-difference methods is based
mainly on the introduction of a bispherical coordinate system, which is very convenient in the
given special problem. Bispherical coordinates allow the use of regular grids in the domain
of the problem which is important for finite-difference methods. A fourth-order discretiza-
tion based on collocation with bi-cubic Hermite basis functions together with a regular grid
in the domain of bispherical coordinates was also used in [8] and produces highly accurate
results.

In the present paper the finite-element method with adaptive mesh enrichment is de-
scribed. Error analysis permits determination of those cells that have a high level of error
and hence should be subdivided. The marked cells are subdivided and the computations are
carried out again on the new mesh. The process is repeated until the desired level of accu-
racy is reached. The boundaries of the solution domain are also subdivided automatically to
satisfy the prescribed solution quality. The mesh is a Delaunay triangulation (DT) in each
step of the solution which allows triangular cells to be as perfect as possible for a given set
of the nodes. The method is flexible enough to solve the problems in which the regions of
high gradient, and hence high errors, of the potential are not known a priori: these regions
are detected automatically. The performance of the proposed approach is demonstrated by
using it to solve the test problem of two interacting identical colloidal particles. However the
method can be adjusted for two-dimensional problems with more sophisticated geometry
including both rectilinear and curvilinear boundaries.

Using irregular meshes and the adaptive technique to solve the PB equation for the
problem of interaction of colloidal particles has previously been done in [9]. The Galerkin
finite-element method with nine-noded quadrilateral elements combined with an adaptive
remeshing was employed. The final mesh was optimal in the sense that each element in the
mesh has nearly the same value of error. The power of the method was demonstrated by
two different examples: two interacting identical spherical particles, and a single spherical
particle at various distances to a cylindrical pore in a planar surface. In both cases, the
method allowed construction of effective meshes and produced final results with a prescribed
accuracy of less than 1%.

The distinctive features of the approach of the present paper are the following. First,
six-noded triangular elements are employed which allow the use of the DT process for
improving the quality of the mesh. Then, the enrichment technique combined with DT
rearranging is used instead of remeshing. The enrichment process involves subdivision of
elements of a current mesh while remeshing means completely regenerating the mesh in
each step of the solution. Enrichment in conjunction with DT can also be a successful mesh
adaptation technique for the PB equation. The initial mesh is not quasi-uniform but has a
variable density depending on the expected initial error distribution within the domain (see
Section 3.5). In addition, final numerical results, at least forFm (see Section 4), are probably
more accurate.

2. DESCRIPTION OF THE PROBLEM

The proposed approach is demonstrated by solving the PB equation for the system of
two identical spherical colloidal particles in a symmetric univalent electrolyte. The case
of constant surface potential [8] is considered. The geometry of the problem is shown in
Fig. 1.
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FIG. 1. The domain for the problem of two interacting identical spherical particles. AB is the axis of rotational
symmetry; BC represents the median plane; ADC designates the walls of a cylindrical vessel.

The dimensionless PB equation for electrostatic potentialφ outside the spheres in cylin-
drical coordinates takes the form

∂2φ

∂r 2
+ 1

r

∂φ

∂r
+ ∂

2φ

∂z2
= sinhφ. (1)

Length, electrostatic potential, and force are respectively measured in units of Debye length
κ−1 = (2nq2

e/εkT)−1/2, kT/qe, andε(kT/qe)
2, wheren is the concentration of any of the

species in the electrolyte,qe is the absolute value of electronic charge,ε is the absolute
permittivity of the electrolyte,k is the Boltzmann constant,T is the absolute temperature,
and the rationalised SI is used to express the factors.

The dimensionless electrostatic potential of the surfaces of either particle is chosen to be
2.0 and is kept constant. The Neumann boundary conditions∂φ/∂n = 0 are implied on the
other boundaries of the domain. Electric fields inside the particles are absent.

The electric field is related to the potential by the equation

E = −∇φ. (2)



MESH ENRICHMENT FOR POISSON–BOLTZMANN 201

The force of interaction of the particles is obtained by means of direct integration of
the total stress tensor over the appropriate surface [10]. There are at least two possible
ways of integrating: over the surface of the particle and over the median plane [7, 9]. The
dimensionless force obtained by integrating over the surface of the particle is calculated
according to the expression

Fs = 1

2

∫
Surface

of the particle

(
E2

r + E2
z

)
n · ez da, (3)

wheren is the outward unit norm vector of the surface element, andez is the unit vector in
thez-direction. For the integration over the median plane, the dimensionless force is

Fm = 1

2

∫
Midplane

[
2(coshφ − 1)+ E2

r

]
da. (4)

The latter case is more accurate since different pieces of the midplane contribute with the
same sign. In both expressions the vector of electric fieldE is assumed to be perpendicular
to the corresponding surfaces which is actually approximately valid due to the numerical
errors.

3. ADAPTIVE PROCESS

The solution of the PB equation with adaptive mesh refinement is a cyclic process. Starting
from the initial mesh, it passes repeatedly through the following steps:

1. Numerical solution of the equation on a given mesh, the mesh being a DT.
2. Evaluation of both the global error and errors in each element of the mesh.

The global error of the solution is assumed to get smaller as the process revolves. If the
desired accuracy is reached, the process stops. If not, a decision is made for each cell on
whether a particular cell should be subdivided or not. The decision is based upon the values
of individual errors of the elements.

3. Subdivision of marked cells. The mesh loses its property to be a DT in general.
4. Modification of the mesh to become a DT. Computation can proceed again on the new

mesh.

The process is repeated until the desired accuracy level is reached (in step 2). The steps of
the adaptive process are considered below in further detail.

3.1. Numerical Solution

In the present paper the PB equation was solved by the Galerkin method [11] on the
mesh of six-noded triangular elements. The system of nonlinear equations resulting from
the discretisation process was solved using the quasi-Newton approach [12]. Once the finite-
element (FE) solution for electrostatic potentialφ has been obtained, the components of
electric field vectorE are calculated by direct differentiation of this solution with respect
to the corresponding coordinates according to Eq. (2). This kind of solution forE is also
called the FE solution and will be designatedÊ. The components of̂E are discontinuous
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across the boundaries of the elements. The details of the numerical procedures [13] are
rather standard and are not discussed in the present paper.

3.2. Error Evaluation

An a posteriori error estimator of the type proposed by Zienkiewicz and Zhu [14] is
used for estimating the error of the solution. The FE solutionÊ for the electric field, which
is, to within a sign, a gradient of electrostatic potential, is compared with an alternative
postprocessed recovered solution. The latter is often called the “exact” solution and will
be designated̃E. To obtainẼ, various gradient recovery techniques can be employed. In
the present paper, a very simple gradient recovery procedure based on averaging the nodal
values of the FE solution̂E is used. The components ofẼ are expressed via the same basic
functions that were used for the electrostatic potential and are continuous.

In the case of the exact solution variablesÊ andẼ must coincide. In general, the error is
defined as a deviation of one variable from the other. More precisely, the global absolute
errorδ is defined by the expression

δ =

∫
Ä

[(Êr − Ẽr )
2+ (Êz− Ẽz)

2] dr dz


1/2

, (5)

the integral being taken over the whole domainÄ. This is simply aL2-norm of the difference
Ê− Ẽ. The global relative errorε is defined by

ε = δ

‖Ê‖ , (6)

where

‖Ê‖ =

∫
Ä

(
Ê2

r + Ê2
z

)
dr dz


1/2

. (7)

Absolute errorδi in a particular elementi is defined as in Eq. (5) except that the integral
is taken over the element. The relation

δ2 =
N∑

i=1

δ2
i (8)

must hold, whereN is the total number of elements in the mesh.
The level of accuracy is determined by the prescribed global relative errorεpre and the

corresponding absolute errorδpre= εpre‖Ê‖. Givenδpre, the current mean absolute errorδm

in an element can be calculated according to

δm =
[
δ2

pre

N

]1/2

=
[
(εpre‖Ê‖)2

N

]1/2

. (9)

The current number of elements would each have to have this value of absolute error to
provide the prescribed level of accuracy, on the condition that absolute errors in all the
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FIG. 2. Subdivision of cells (see Section 3.3): (a) Internal cell and cell adjoining a rectilinear boundary.
(b) Stretched cell adjoining a rectilinear boundary. (c) Cell adjoining a circular boundary of small curvature.
(d) Cell adjoining a circular boundary of large curvature.

elements were the same. Those elements whose absolute errors exceed the current mean
absolute errorδm are chosen to be subjected to subdivision.

3.3. Subdivision of Cells

A triangular cell is called internal if none of its sides belongs to the boundary of the
problem’s domain.

1. If a cell is internal, a new node is placed at the barycentre of the triangle and connected
to the vertices of the cell. Three new triangles appear instead of the former triangle (see
Fig. 2a).

If a cell is not internal, at least one of its sides belongs to the boundary of the domain.
Two different situations are considered: rectilinear boundary and circular boundary.

If a cell adjoins the rectilinear boundary it is divided in either of the following ways.

2a. If the circumcentre of the triangle is located within the domain, a new node is placed
at the barycentre of the triangle as for an internal cell.

2b. If the circumcentre of the triangle is beyond the domain, an alternative method is
used. Two new nodes are placed on the corresponding boundary side dividing it into three
equal parts. Then the new nodes are connected to the opposite vertex of the cell and three
new triangles appear instead of the former triangle (see Fig. 2b).

The circular boundary is actually represented by a broken line. There should be enough
segments in the broken line for an efficient reproduction of the shape of the curvilinear
boundary and for sufficiently high accuracy of the solution. The number of segments can
be increased during the calculations.
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If a cell adjoins the circular boundary, it is divided in one of the following ways.

3a. If the circumcentre of the triangle is located within the domain, a new node is placed
at the barycentre of the triangle on the condition that the sides of the new triangles do not
cross the imaginary circular boundary (see Fig. 2c).

3b. If the circumcentre of the triangle is located within the domain and division according
to point 3a is impossible, an alternative method is used. The boundary side of the cell that
corresponds to the circular boundary is divided into three equal parts by means of two new
nodes. Then the new nodes are shifted along the radii of the circle to be allocated on the
circumference and connected to the vertices of the cell, thus producing three new triangles
(see Fig. 2d).

3c. If the circumcentre of the triangle is beyond the domain, the method of point 3b is
always used.

The proposed algorithm provides efficient adaptive division of both the interior and the
boundaries of the domain.

3.4. Delaunay Triangulation

Meshes employed in the problem are Delaunay triangulation (DT) of the domain [15].
DT provides locally the “most perfect” triangles. More precisely, let the pair of triangles
have a side in common. The common side can be thrown over between the vertices of the
triangles to make a new pair of triangles instead of the former one (see Fig. 3). Such a
transfer is called a flip. A particular mesh is DT if and only if the minimal angle of the six
angles in any pair of adjacent triangles is not magnified by a flip.

The property of DT to produce “perfect” triangles is equivalent to the so-called circular
criterion: mesh is DT if and only if the circumscribed circle of each triangle does not contain
any other node of the mesh.

FIG. 3. Flip of the common side of two neighbour triangles.
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The division of cells perturbs the mesh which is in general no longer DT. An algorithm
based on the circular criterion has been implemented to convert the mesh perturbed by the
division process back to DT. Each of the newly obtained triangles is checked in turn as to
whether it satisfies the circular criterion. If not, the corresponding flip is performed and each
of the triangles resulting from the flip is checked again, and so on. This recursive procedure
usually generates few flips, if any at all. However, it can sometimes cause a long sequence
of flips and affects a significant part of the domain.

After the recursive procedure has been applied to each triangle produced by the division
process, the mesh will be DT.

3.5. Initial Mesh

An initial mesh of sufficient quality is needed to launch the adaptive numerical process.
Creation of an initial mesh starts from constructing by hand a coarse germ grid of triangular
elements which completely covers the solution domain. The purpose of the germ grid is to
resolve the domain with rectilinear and circular boundaries into a number of triangles of
reasonable shape, the number possibly being very small. The germ grid for the problem of
interaction of two identical colloidal particles is shown in Fig. 4a.

Once the germ grid has been created, the subdivision process discussed above is applied
to generate an initial mesh. The only distinction is that different criteria for whether a cell
should be subdivided are invoked rather than the criterion described at the end of Section 3.2.

The first approach is based on a simple indicator of type exp(−r ), wherer is the shortest
distance from the barycentre of a triangular cell to the boundary at constant nonzero poten-
tial, for instance, to the surface of the particle. The elements with indicators greater than
some preset level are subdivided. The expression exp(−r ) can be treated as a very rough
approximation of the distribution of electrostatic potential in a real problem. Nevertheless,
it works quite well for an initial mesh generation. This approach induces the most refining
in those areas of the domain where the gradient of the solution is expected to be high.

Another approach is a forced subdivision of cells adjoining certain boundaries. In par-
ticular, it allows the desired initial geometrical representation of a circular boundary by a

FIG. 4. Meshes for the problem of interaction of two identical spherical particles: (a) germ mesh, 11 cells,
(b) initial mesh, 147 cells, (c) final mesh (after 8 steps), 16625 cells.
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TABLE I

Steps of the Adaptive Process

Force of interaction
Global relative Number Length of the

Step number errorε (%) Fs Fm of segmentsa biggest segmenta

1 4.8994 8.997 15.384 33 1.054
2 1.5148 13.608 15.517 53 1.054
3 0.5076 14.322 15.529 87 0.368
4 0.1942 14.933 15.541 173 0.256
5 0.0831 15.313 15.543 263 0.123
6 0.0397 15.438 15.544 505 0.085
7 0.0275 15.504 15.545 699 0.041
8 0.0233 15.574 15.545 961 0.033

a The segments of the broken line representing the circular boundary.

broken line. Then, the boundary can be additionally subdivided during the adaptive process
depending on the accuracy of the solution.

Combining these two methods, one can generate an initial mesh of quality sufficient to
obtain a reasonable initial numerical solution on it. The initial mesh for the problem studied
in the present paper is shown in Fig. 4b.

4. RESULTS AND DISCUSSION

The germ, initial, and final meshes for the problem studied in the present paper are shown
in Fig. 4. Some details of the solution at each step of the adaptive process are brought together
in Table I.

The second column of the table contains the current global relative errorε which is
defined by Eq. (6). The third and fourth columns of Table I contain numerical results for the
forces of interactionFs andFm. The forces are calculated according to Eq. (3) and Eq. (4),
respectively, the FE solution̂E for the electric field being used. The use of the recovered
solutionẼ does not contribute significantly to increasing the accuracy compared withÊ,
so corresponding results have not been included in the paper. Values of forces obtained in
the present work are divided byπ to unify the units. The fifth and sixth columns of Table I
contain characteristics of the broken line representing the circular boundary.

The numerical results for the force of interaction are compared with the previous results in
Table II. The data for the comparison are taken from [9]. The original sources are indicated
in the table.

The global relative errorε in the second column of Table I decreases steadily while the
process evolves. It has taken six steps to exceed the prescribed accuracy of 0.05%. Two

TABLE II

The Force of Interaction of Two Identical Colloidal Particles

Present paper [9]
[6] [8]

Fs Fm Fs Fm Fm Fm

15.574 15.545 15.412 15.509 15.476 15.545
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more steps raise the accuracy to 0.0233%. Further growth of accuracy is negligible since
almost all elements of the mesh have less absolute error than the current mean absolute error
δm in an element (see the last paragraph of Section 3.2) and are not subjected to subdivision.

Data for the forceFm in the fourth column of Table I exhibit rapid monotone convergence
to the final value. This value coincides exactly, to three decimal places, with the analogous
value in [8] (see Table II) and is in accordance within several tenths of a percent with the
corresponding results of [6] and [9]. The magnitude of the forceFm in [8] is probably most
accurate at present due to the features of the numerical procedure and taking into account the
specific symmetry of the problem. A high prescribed level of accuracy (0.05%), excellent
convergence, and accord with the earlier literature data, especially [8], testify to the high
quality of the result obtained forFm.

Convergence of the forceFs in the third column of Table I is worse than that ofFm but
is still rather good: values ofFs at the last stages of solution differ from each other within
several tenths of a percent. The difference between values ofFs andFm can also serve as an
additional accuracy measure. This difference for the final values ofFs andFm amounts to
0.19% ofFm. The accordance ofFs with the known literature data in Table II is also within
several tenths of a percent.

There are at least two reasons for the accuracy ofFs to be lower than that ofFm. One was
mentioned at the end of Section 2. It is that different parts of the spherical surface contribute
to the forceFs with opposite signs so that the net value is a sum of pieces which cancel
to a considerable degree. The other reason is more significant: the quality of the solution
and its gradient near the surface of the particle is lower than that at the other regions of the
domain due to the large magnitudes of the gradient. The forceFm does not suffer from this
drawback since the gradient, and hence the error, of the solution on the midplane is small.
The situation may possibly be improved by employing a more perfect gradient recovery
technique, such as superconvergent patch recovery (SPR) [16], and using the recovered
gradient for calculations.

The fifth and sixth columns of Table I contain the number of segments and the length
of the biggest segment of the broken line representing the circular boundary. The initial
geometric shape of the boundary (without respect to the accuracy of solution) is created at
the stage of initial mesh generation. Then the representation of the boundary is refined in
accordance with the accuracy requirements during the adaptive solution process. The data
in Table I demonstrate gradual refinement of the representation throughout the process.

The numerical results presented indicate that the proposed mesh enrichment procedure
can maintain the high accuracy level. The procedure demonstrates an ability to gradually
improve the quality of the solution and the geometry of the problem. Since the method does
not exploit any specific features of the problem, such as specific symmetry, it is expected
to be useful for problems with more complex geometries and boundary conditions.
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